Numerical transformation methods: Blasius problem and its variants
نویسنده
چکیده
Blasius problem is the simplest nonlinear boundary-layer problem. We hope that any approach developed for this epitome can be extended to more difficult hydrodynamics problems. With this motivation we review the so called Töpfer transformation, which allows us to find a non-iterative numerical solution of the Blasius problem by solving a related initial value problem and applying a scaling transformation. The applicability of a non-iterative transformation method to the Blasius problem is a consequence of its partial invariance with respect to a scaling group. Several problems in boundary-layer theory lack this kind of invariance and cannot be solved by non-iterative transformation methods. To overcome this drawback, we can modify the problem under study by introducing a numerical parameter, and require the invariance of the modified problem with respect to an extended scaling group involving this parameter. Then we apply initial value methods to the most recent developments involving variants and extensions of the Blasius problem. 2009 Elsevier Inc. All rights reserved.
منابع مشابه
Transformation Methods for the Blasius Problem and its Recent Variants
Blasius problem is the simplest nonlinear boundary layer problem. We hope that any approach developed for this epitome can be extended to more difficult hydrodynamics problems. With this motivation we review the so called Töpfer transformation, which allows us to find a non-iterative numerical solution of the Blasius problem by solving a related initial value problem and applying a scaling tran...
متن کاملNumerical quasilinearization scheme for the integral equation form of the Blasius equation
The method of quasilinearization is an effective tool to solve nonlinear equations when some conditions on the nonlinear term of the problem are satisfied. When the conditions hold, applying this technique gives two sequences of coupled linear equations and the solutions of these linear equations are quadratically convergent to the solution o...
متن کاملThe Development and Application of the RCW Method for the Solution of the Blasius Problem
In this research, a numerical algorithm is employed to investigate the classical Blasius equation which is the governing equation of boundary layer problem. The base of this algorithm is on the development of RCW (Rahmanzadeh-Cai-White) method. In fact, in the current work, an attempt is made to solve the Blasius equation by using the sum of Taylor and Fourier series. While, in the most common ...
متن کاملAccurate Numerical Method for Blasius’ Problem for Flow past a Flat Plate with Mass Transfer∗
We construct a new finite difference method for computing reference numerical solutions to the one–parameter family of Blasius’ problems arising from incompressible laminar flow past a thin flat plate with mass transfer by both suction and blowing. We show that, by studying several representative problems in the family, the method generates nodal approximations, at a finite number of nodes, to ...
متن کاملNumerical Solution of a Laminar Viscous Flow Boundary Layer Equation Using Uniform Haar Wavelet Quasi-linearization Method
In this paper, we have proposed a Haar wavelet quasilinearization method to solve the well known Blasius equation. The method is based on the uniform Haar wavelet operational matrix defined over the interval [0, 1]. In this method, we have proposed the transformation for converting the problem on a fixed computational domain. The Blasius equation arises in the various boundary layer problems of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied Mathematics and Computation
دوره 215 شماره
صفحات -
تاریخ انتشار 2009